Data Mining Techniques for Land Use Land Cover Classification Using Multi-temporal Awifs Data

نویسنده

  • Sreenivas Kandrika
چکیده

The present study addresses the attempt made to explore the temporal (5-day revisit) and spatial resolution (56m) potential of AWiFS sensor aboard IRS-P6 to generate the land use land cover information using decision tree classification technique using See 5 data mining algorithm. The results obtained after two annual cycles and issues related to digital classification of temporal satellite data were presented and discussed. The temporal datasets were co-registered to sub-pixel accuracy and were atmospherically corrected using modified dark pixel method. Scaled reflectance values were extracted for various classes and rule sets were generated using See-5 data mining algorithm. These rule sets were ported into ERDAS Imagine Knowledge Engineer and the temporal data sets were classified. The results indicate that temporal satellite data at monthly interval found to be suitable to address the seasonal variability in agricultural cropland. The problem with temporal dynamics of cloud cover could be overcome with a little extra care during training site selection. Additional training sites should be defined in cloudy regions keeping its temporal dynamics of the target class in view. Mis-registration among temporal data sets too can influence classification accuracies. Among various land cover classes, classification accuracy is poorer in classes those devoid of vegetal cover. Overall kappa statistic was 0.866 for 200405 which was further improved to 0.908 during 2005-06.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decision tree classification of land use land cover for Delhi, India using IRS-P6 AWiFS data

In this study we explored the potential of multi-temporal IRS P6 (Resourcesat) Advanced Wide Field Sensor (AWiFS) data for mapping of LULC for Delhi, India. The study presents the result of a decision tree classification of seasonal composite data (three seasons). The study has identified 13 classes with description of cropping pattern namely, double crops, kharif, rabi and zaid from 56 m spati...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Comparison of Land Cover Characterization Using EOS MISR and MODIS Data and a Decision Tree Classifier

Land cover characterization at a regional scale using spaceborne multi-angle remote sensing data is in its infancy. A data mining technique was employed to evaluate the degree to which the accuracy of land cover classification can be increased using multi-spectral, multi-temporal and multi-angle remote sensing data. The study area is around the Jornada Rangeland in New Mexico, USA with shrublan...

متن کامل

پایش و پیش‌بینی روند تغییرات کاربری اراضی با استفاده از تصاویر ماهواره‌ای و زنجیرۀ مارکوف (مطالعۀ موردی: حوزۀ آبخیز سمل- استان بوشهر)

Assessment of land use spatiotemporal changes provide valuable data for managers to elaborate plans. Land use change modeling is one of the methods used by planers to manage land use changes. Detection of such changes may help decision makers and planners to understand the factors in land use and land cover changes in order to take effective and useful measures. Remote sensing (RS) and geograph...

متن کامل

IRS-1C image data applications for land use/land cover mapping in Zagros region, Case study: Ilam watershed, West of Iran

In land use planning, mapping the present land use / land cover situation is a necessary tool for determining the current condition and for identifying land use trends. In this study, in order to provide a land use/ land cover map for Ilam watershed, the IRS-1C image data from 25th April 2006 were used. Initial qualitative evaluation on data showed no significant radiometric error. Ortho-rectif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008